-->
Content Management > Columns
Content management is the process of collecting, managing, and publishing information. Content management systems (CMS) are applications that allow users to create and publish digital content. Today's content management and content services environments are an increasingly important part of an organization's information management and business strategy. See below for the latest content management news, trends, and solutions.

KM & AI Summit 2025, March 17 - 19 in beautiful Scottsdale, Arizona. Register Now! 

The Long- and Short-Term Impacts of AI Technologies

A much less-known but arguably more critical tech law is Amara's Law, which states that we tend to overestimate the short-term impact of new technology while underestimating its long-term effects.

252 Million Walas

There are 195 countries in the world. How many more entrepreneurial innovation hotspots are out there, waiting to be tapped and awakened? In our high-tech, virtual world, all of the steps Pakistan has taken can be replicated virtually anywhere, regardless of your country's size, GDP, or location. Imagine the possibilities ...

Inefficient at the speed of light

While process mining started years ago as a mainly data-driven exercise, its stated goal is to be knowledge-driven. Given KM's multidisciplinary scope, we can play a major role in achieving that goal. Any process, no matter how simple, has the potential to reach across an entire business ecosystem, including all stakeholders. This seems like a perfect match for collaborative workflow, AI/ML, knowledge graphs, human sensemaking, and many of the other arrows in our KM quiver.

The rise and potential fall of the citizen developer

The citizen developer movement was heralded as a revolution. Like most revolutions, things have sometimes gone differently than planned. The logic is sound, empowering those who know the business best to build the tools and systems needed to do their job. Ah, if only things were that simple …

On Chat AI and BS

So, I'm sticking with hallucinations for all of chat AI's statements, true or false. But that leaves us with a question: Why isn't there a word that perfectly expresses this situation? The answer is easy: LLMs are doing something genuinely new in our history. Our lack of a perfectly apt verb proves it.

What is Bharat and why should you care?

Knowledge should always be considered as accretive, not something that's "here today, gone tomorrow."

Pushing the boundaries of knowledge curation

Knowledge democratization occurs in two directions, seemingly engaged in an endless tug of war: acquisition and dissemination.

The third place of knowledge management

The third place I alluded to goes far beyond mechanistic KM or curated knowledge and takes us into the actual world of tacit knowledge. Here, knowledge comes from and often remains as personal experience, impressions, and intuition; it's undocumented and often hidden and elusive.

The flip side of generative AI: Extractive AI

Extractive AI takes a more comprehensive and transparent approach to machine intelligence.

Should we go back to paper-based KM?

The sheer volume of largely useless data we have accumulated across the years severely limits the ability of AI to work well, and it comes at a heavy environmental and financial cost.

The five ages of data

Perhaps this latest phase in the history of data will bring us to accept inexplicable complexity as a property of the world. We could view this as pure chaos, but thanks to having lived through the past four ages in rapid succession, we might instead recognize that chaos as being rich with endless mysteries we will never uncover completely.

The trust problem with GenAI

2023 has been the year of ultra-hyping GenAI, and who is paying for this deluge of marketing? Technology vendors that want us to buy it. Again, it's impressive stuff, but when we shift from selling to buying and ultimately using it, many tough questions need to be asked.

Get your game on: KM skills needed for reliable use of LLMs

There is no questioning that generative AI is here to stay, but its use in mission-critical work has some way to go before it can be trusted and let loose.

Reframing the KM discussion

The tech sector is growing fast, but without thorough business analysis, insight, proper planning, and a focus on challenging the better-quicker-cheaper approach and replacing it with a beneficial-adaptable-affordable commitment, there is a world of trouble ahead.

Data is never just data

As with all tools, data has uses because of complex contexts that include other objects, physics, social norms, social institutions, and human intentions.

Thinking about KM differently

Moving to a push rather than a pull mentality simply means that we now have the technology to tag, manage, and interpret information automatically and near instantly—automatically pushing the right information to the right person (or application) at the right time.

Deep project management

Given the increased negative media exposure that comes from project failure, organizations need more tightly integrated, intelligent project management systems, in addition to people who have the requisite skills. This need will grow as systems continue to become more complex and timelines more tightly compressed.

Flipping data science

No matter how much "intelligence" is programmed into a computer, it will very likely never understand the results it produces. Doing so takes human cognition, intuition, judgment, and other ways we humans make sense out of data.

Rebooting the information refinery

In the field of knowledge management, of course, the idea of turning data into information into knowledge has been a foundation concept for knowledge managers. But frankly, the ability to achieve this alchemy of data to knowledge has not been broadly demonstrated in practice. A next generation information refinery is required to make something meaningful and valuable out of the raw data flying around the firm and throughout the internet economy.

A deep future approach to KM

We're familiar with the near-term portion of the time spectrum—from femtosecond lasers used in eye surgery to high-frequency trading in milliseconds on the major securities exchanges. Unfortunately, the extreme opposite end of the time spectrum, the "deep future" receives little if any attention. Decisions in fields such as genetic engineering, nuclear energy, geopolitics and the like can have serious implications for human civilization. But the impact of those decisions might not become apparent for many thousands of years and hundreds of generations.