-->
Intellectual Property Management > Columns
Intellectual property/capital are terms used to describe intangible assets: the results of human thought and talent that have value and are original. This can include designs, published text, new inventions or improvement, software and music. Managing and protecting that IP in a way that drives more value and stimulates sustainable growth is important for many organizations.

NEXT WEEK! KM & AI Summit 2025, March 17 - 19 in beautiful Scottsdale, Arizona. Register Now! 

Inefficient at the speed of light

While process mining started years ago as a mainly data-driven exercise, its stated goal is to be knowledge-driven. Given KM's multidisciplinary scope, we can play a major role in achieving that goal. Any process, no matter how simple, has the potential to reach across an entire business ecosystem, including all stakeholders. This seems like a perfect match for collaborative workflow, AI/ML, knowledge graphs, human sensemaking, and many of the other arrows in our KM quiver.

The rise and potential fall of the citizen developer

The citizen developer movement was heralded as a revolution. Like most revolutions, things have sometimes gone differently than planned. The logic is sound, empowering those who know the business best to build the tools and systems needed to do their job. Ah, if only things were that simple …

What is Bharat and why should you care?

Knowledge should always be considered as accretive, not something that's "here today, gone tomorrow."

Pushing the boundaries of knowledge curation

Knowledge democratization occurs in two directions, seemingly engaged in an endless tug of war: acquisition and dissemination.

The third place of knowledge management

The third place I alluded to goes far beyond mechanistic KM or curated knowledge and takes us into the actual world of tacit knowledge. Here, knowledge comes from and often remains as personal experience, impressions, and intuition; it's undocumented and often hidden and elusive.

Should we go back to paper-based KM?

The sheer volume of largely useless data we have accumulated across the years severely limits the ability of AI to work well, and it comes at a heavy environmental and financial cost.

The trust problem with GenAI

2023 has been the year of ultra-hyping GenAI, and who is paying for this deluge of marketing? Technology vendors that want us to buy it. Again, it's impressive stuff, but when we shift from selling to buying and ultimately using it, many tough questions need to be asked.

Get your game on: KM skills needed for reliable use of LLMs

There is no questioning that generative AI is here to stay, but its use in mission-critical work has some way to go before it can be trusted and let loose.

Thinking about KM differently

Moving to a push rather than a pull mentality simply means that we now have the technology to tag, manage, and interpret information automatically and near instantly—automatically pushing the right information to the right person (or application) at the right time.

Ethical issues in AI and cognitive computing

Many innovations from the past needed the insight of entrepreneurs as well as technologists to change the world. That's also the case with machine learning and AI.

Flipping data science

No matter how much "intelligence" is programmed into a computer, it will very likely never understand the results it produces. Doing so takes human cognition, intuition, judgment, and other ways we humans make sense out of data.

Crossing the epistemic divide

As the world races ahead, purely data-driven approaches will become less attractive. Instead, we need to start gaining a deeper understanding of how to bridge the great divide which separates the artificial and the natural.

A deep future approach to KM

We're familiar with the near-term portion of the time spectrum—from femtosecond lasers used in eye surgery to high-frequency trading in milliseconds on the major securities exchanges. Unfortunately, the extreme opposite end of the time spectrum, the "deep future" receives little if any attention. Decisions in fields such as genetic engineering, nuclear energy, geopolitics and the like can have serious implications for human civilization. But the impact of those decisions might not become apparent for many thousands of years and hundreds of generations.

Once and future KM